Procedure, Example Solved Problem | Operations Research - Solution of assignment problems (Hungarian Method) | 12th Business Maths and Statistics : Chapter 10 : Operations Research

Chapter: 12th business maths and statistics : chapter 10 : operations research.

Solution of assignment problems (Hungarian Method)

First check whether the number of rows is equal to the numbers of columns, if it is so, the assignment problem is said to be balanced.

Step :1 Choose the least element in each row and subtract it from all the elements of that row.

Step :2 Choose the least element in each column and subtract it from all the elements of that column. Step 2 has to be performed from the table obtained in step 1.

Step:3 Check whether there is atleast one zero in each row and each column and make an assignment as follows.

solved example of assignment problem in operations research

Step :4 If each row and each column contains exactly one assignment, then the solution is optimal.

Example 10.7

Solve the following assignment problem. Cell values represent cost of assigning job A, B, C and D to the machines I, II, III and IV.

solved example of assignment problem in operations research

Here the number of rows and columns are equal.

∴ The given assignment problem is balanced. Now let us find the solution.

Step 1: Select a smallest element in each row and subtract this from all the elements in its row.

solved example of assignment problem in operations research

Look for atleast one zero in each row and each column.Otherwise go to step 2.

Step 2: Select the smallest element in each column and subtract this from all the elements in its column.

solved example of assignment problem in operations research

Since each row and column contains atleast one zero, assignments can be made.

Step 3 (Assignment):

solved example of assignment problem in operations research

Thus all the four assignments have been made. The optimal assignment schedule and total cost is

solved example of assignment problem in operations research

The optimal assignment (minimum) cost

Example 10.8

Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows. Determine the optimum assignment schedule.

solved example of assignment problem in operations research

∴ The given assignment problem is balanced.

Now let us find the solution.

The cost matrix of the given assignment problem is

solved example of assignment problem in operations research

Column 3 contains no zero. Go to Step 2.

solved example of assignment problem in operations research

Thus all the five assignments have been made. The Optimal assignment schedule and total cost is

solved example of assignment problem in operations research

The optimal assignment (minimum) cost = ` 9

Example 10.9

Solve the following assignment problem.

solved example of assignment problem in operations research

Since the number of columns is less than the number of rows, given assignment problem is unbalanced one. To balance it , introduce a dummy column with all the entries zero. The revised assignment problem is

solved example of assignment problem in operations research

Here only 3 tasks can be assigned to 3 men.

Step 1: is not necessary, since each row contains zero entry. Go to Step 2.

solved example of assignment problem in operations research

Step 3 (Assignment) :

solved example of assignment problem in operations research

Since each row and each columncontains exactly one assignment,all the three men have been assigned a task. But task S is not assigned to any Man. The optimal assignment schedule and total cost is

solved example of assignment problem in operations research

The optimal assignment (minimum) cost = ₹ 35

Related Topics

Privacy Policy , Terms and Conditions , DMCA Policy and Compliant

Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.

Assignment Problem: Meaning, Methods and Variations | Operations Research

solved example of assignment problem in operations research

After reading this article you will learn about:- 1. Meaning of Assignment Problem 2. Definition of Assignment Problem 3. Mathematical Formulation 4. Hungarian Method 5. Variations.

Meaning of Assignment Problem:

An assignment problem is a particular case of transportation problem where the objective is to assign a number of resources to an equal number of activities so as to minimise total cost or maximize total profit of allocation.

The problem of assignment arises because available resources such as men, machines etc. have varying degrees of efficiency for performing different activities, therefore, cost, profit or loss of performing the different activities is different.

Thus, the problem is “How should the assignments be made so as to optimize the given objective”. Some of the problem where the assignment technique may be useful are assignment of workers to machines, salesman to different sales areas.

Definition of Assignment Problem:

ADVERTISEMENTS:

Suppose there are n jobs to be performed and n persons are available for doing these jobs. Assume that each person can do each job at a term, though with varying degree of efficiency, let c ij be the cost if the i-th person is assigned to the j-th job. The problem is to find an assignment (which job should be assigned to which person one on-one basis) So that the total cost of performing all jobs is minimum, problem of this kind are known as assignment problem.

The assignment problem can be stated in the form of n x n cost matrix C real members as given in the following table:

solved example of assignment problem in operations research

Check it out now on O’Reilly

Dive in for free with a 10-day trial of the O’Reilly learning platform—then explore all the other resources our members count on to build skills and solve problems every day.

solved example of assignment problem in operations research

HungarianAlgorithm.com

Index     Assignment problem     Hungarian algorithm     Solve online    

Solve an assignment problem online

Fill in the cost matrix of an assignment problem and click on 'Solve'. The optimal assignment will be determined and a step by step explanation of the hungarian algorithm will be given.

Fill in the cost matrix ( random cost matrix ):

Don't show the steps of the Hungarian algorithm Maximize the total cost

HungarianAlgorithm.com © 2013-2024

The MBA Institute

Unbalanced Assignment Problem: Definition, Formulation, and Solution Methods

Table of Contents

Are you familiar with the assignment problem in Operations Research (OR)? This problem deals with assigning tasks to workers in a way that minimizes the total cost or time needed to complete the tasks. But what if the number of tasks and workers is not equal? In this case, we face the Unbalanced Assignment Problem (UAP). This blog will help you understand what the UAP is, how to formulate it, and how to solve it.

What is the Unbalanced Assignment Problem?

The Unbalanced Assignment Problem is an extension of the Assignment Problem in OR, where the number of tasks and workers is not equal. In the UAP, some tasks may remain unassigned, while some workers may not be assigned any task. The objective is still to minimize the total cost or time required to complete the assigned tasks, but the UAP has additional constraints that make it more complex than the traditional assignment problem.

Formulation of the Unbalanced Assignment Problem

To formulate the UAP, we start with a matrix that represents the cost or time required to assign each task to each worker. If the matrix is square, we can use the Hungarian algorithm to solve the problem. But when the matrix is not square, we need to add dummy tasks or workers to balance the matrix. These dummy tasks or workers have zero costs and are used to make the matrix square.

Once we have a square matrix, we can apply the Hungarian algorithm to find the optimal assignment. However, we need to be careful in interpreting the results, as the assignment may include dummy tasks or workers that are not actually assigned to anything.

Solutions for the Unbalanced Assignment Problem

Besides the Hungarian algorithm, there are other methods to solve the UAP, such as the transportation algorithm and the auction algorithm. The transportation algorithm is based on transforming the UAP into a transportation problem, which can be solved with the transportation simplex method. The auction algorithm is an iterative method that simulates a bidding process between the tasks and workers to find the optimal assignment.

In summary, the Unbalanced Assignment Problem is a variant of the traditional Assignment Problem in OR that deals with assigning tasks to workers when the number of tasks and workers is not equal. To solve the UAP, we need to balance the matrix by adding dummy tasks or workers and then apply algorithms such as the Hungarian algorithm, the transportation algorithm, or the auction algorithm. Understanding the UAP can help businesses and organizations optimize their resource allocation and improve their operational efficiency.

How useful was this post?

Click on a star to rate it!

Average rating 1.5 / 5. Vote count: 2

No votes so far! Be the first to rate this post.

We are sorry that this post was not useful for you! 😔

Let us improve this post!

Tell us how we can improve this post?

Operations Research

1 Operations Research-An Overview

  • History of O.R.
  • Approach, Techniques and Tools
  • Phases and Processes of O.R. Study
  • Typical Applications of O.R
  • Limitations of Operations Research
  • Models in Operations Research
  • O.R. in real world

2 Linear Programming: Formulation and Graphical Method

  • General formulation of Linear Programming Problem
  • Optimisation Models
  • Basics of Graphic Method
  • Important steps to draw graph
  • Multiple, Unbounded Solution and Infeasible Problems
  • Solving Linear Programming Graphically Using Computer
  • Application of Linear Programming in Business and Industry

3 Linear Programming-Simplex Method

  • Principle of Simplex Method
  • Computational aspect of Simplex Method
  • Simplex Method with several Decision Variables
  • Two Phase and M-method
  • Multiple Solution, Unbounded Solution and Infeasible Problem
  • Sensitivity Analysis
  • Dual Linear Programming Problem

4 Transportation Problem

  • Basic Feasible Solution of a Transportation Problem
  • Modified Distribution Method
  • Stepping Stone Method
  • Unbalanced Transportation Problem
  • Degenerate Transportation Problem
  • Transhipment Problem
  • Maximisation in a Transportation Problem

5 Assignment Problem

  • Solution of the Assignment Problem
  • Unbalanced Assignment Problem
  • Problem with some Infeasible Assignments
  • Maximisation in an Assignment Problem
  • Crew Assignment Problem

6 Application of Excel Solver to Solve LPP

  • Building Excel model for solving LP: An Illustrative Example

7 Goal Programming

  • Concepts of goal programming
  • Goal programming model formulation
  • Graphical method of goal programming
  • The simplex method of goal programming
  • Using Excel Solver to Solve Goal Programming Models
  • Application areas of goal programming

8 Integer Programming

  • Some Integer Programming Formulation Techniques
  • Binary Representation of General Integer Variables
  • Unimodularity
  • Cutting Plane Method
  • Branch and Bound Method
  • Solver Solution

9 Dynamic Programming

  • Dynamic Programming Methodology: An Example
  • Definitions and Notations
  • Dynamic Programming Applications

10 Non-Linear Programming

  • Solution of a Non-linear Programming Problem
  • Convex and Concave Functions
  • Kuhn-Tucker Conditions for Constrained Optimisation
  • Quadratic Programming
  • Separable Programming
  • NLP Models with Solver

11 Introduction to game theory and its Applications

  • Important terms in Game Theory
  • Saddle points
  • Mixed strategies: Games without saddle points
  • 2 x n games
  • Exploiting an opponent’s mistakes

12 Monte Carlo Simulation

  • Reasons for using simulation
  • Monte Carlo simulation
  • Limitations of simulation
  • Steps in the simulation process
  • Some practical applications of simulation
  • Two typical examples of hand-computed simulation
  • Computer simulation

13 Queueing Models

  • Characteristics of a queueing model
  • Notations and Symbols
  • Statistical methods in queueing
  • The M/M/I System
  • The M/M/C System
  • The M/Ek/I System
  • Decision problems in queueing

Assignment problem: Hungarian method 1

Unmarkierte Änderungen werden auf dieser Seite angezeigt

Assignment problem: Hungarian Method Dennis Motsch (Mtk_Nr.: 381230) Nicolas Heinrich (Mtk_Nr.: 377721) Marian Westendorff (Mtk-Nr.: 377495)

Introduction

The Hungarian Method is an algorithm developed by Harold Kuhn to solve assignment problems in polynomial time. The assignment problem is a special case of the transportation problem in which the number of provider and consumer are equal and supply (ai) and demand (bj) amounts are defined as 1.

Typical examples of assignment problems are:

- Auction Model: A number of goods has to be evenly distrubuted to an equal number of customer. Every customer has its own price idea on the good he is interested. Goal is to maximize the all-round price.

- Job Problem: A number of work assignments has to be distributed to an equally number of workers or machines. The evaluation will be the qualification of a worker or the costs to assign the order to a machine.

- Marriage Problem: A father wants to minimize his marriage gift and wants to maximize the sympathy of his daughters to the men.

With the Hungarian Method such problems can be easily solved without a lot of calculating steps. The solution is binear and integer. In most cases the output table has a quadratic matrix form.

Sample Solution

The following example shows the problem of a flat share who wants to assign specific jobs to cleaners. Their goal is to assign the jobs optimal so their costs will be minimized.

Operations Research von Müller-Mehrbach http://de.wikipedia.org/wiki/Ungarische_Methode Operations Research Skript TU Kaiserslautern

Navigationsmenü

  • Quelltext anzeigen
  • Versionsgeschichte

Meine Werkzeuge

  • Gemeinschaftsportal
  • Operations Research
  • Studentenbeiträge zum Thema Operations Research
  • Wirtschaftsinformatik
  • Aktuelle Ereignisse
  • Letzte Änderungen
  • Zufällige Seite
  • Links auf diese Seite
  • Änderungen an verlinkten Seiten
  • Spezialseiten
  • Druckversion
  • Permanenter Link
  • Seiten­informationen

Powered by MediaWiki

  • Diese Seite wurde zuletzt am 1. Juli 2013 um 11:46 Uhr geändert.
  • Datenschutz
  • Über Operations-Research-Wiki

Travelling Salesman Problem

This humorously named problem refers to the following situation:

A travelling salesman , named Rover plans to visit each of n cities. He wishes to visit each city once and only once, arriving back to city from where he started. The distance between City i and City j is c ij . What is the shortest tour Rover can take?

If there are n cities, there are (n - 1)! possible ways for his tour. For example, if the number of cities to be visited is 5, then there are 4! different combinations. Such type of problems can be solved by the assignment method.

Let c ij be the distance (or cost or time) between City i to City j and

Use Horizontal Scrollbar to View Full Details

x = 1 if a tour includes travelling from city i to city j (for i ≠ j)
0 otherwise

The following example will help you in understanding the travelling salesman problem of operation research.

Example: Travelling Salesman Problem

A travelling salesman, named Rolling Stone plans to visit five cities 1, 2, 3, 4 & 5. The travel time (in hours) between these cities is shown below:

To
From 1 2 3 4 5
1 5 8 4 5
2 5 7 4 5
3 8 7 8 6
4 4 4 8 8
5 5 5 6 8

How should Mr. Rolling Stone schedule his touring plan in order to minimize the total travel time , if he visits each city once a week?

"As every thread of gold is valuable, so is every minute of time." - John Mason

After applying steps 1 to 3 of the Hungarian method, we get the following assignments.

Use Horizontal Scrollbar to View Full Table.

To
From 1 2 3 4 5
1 1 3 1
2 1 2 1
3 2 1 2
4 3 4
5 3

Draw the minimum number of vertical and horizontal lines necessary to cover all the zeros in the reduced matrix.

Select the smallest element from all the uncovered elements. Subtract this smallest element from all the uncovered elements and add it to the elements, which lie at the intersection of two lines. Thus, we obtain another reduced matrix for fresh assignment. Repeating step 3 on the reduced matrix, we get the following assignments.

To
From 1 2 3 4 5
1 2 1
2 1 1
3 1 2
4 3 5
5 4

The above solution suggests that the salesman should go from city 1 to city 4, city 4 to city 2, and then city 2 to 1 (original starting point). The above solution is not a solution to the travelling salesman problem as he visits city 1 twice.

The next best solution can be obtained by bringing the minimum non-zero element, i.e., 1 into the solution. Please note that the value 1 occurs at four places. We will consider all the cases separately until the acceptable solution is obtained. To make the assignment in the cell (2, 3), delete the row & the column containing this cell so that no other assignment can be made in the second row and third column.

Now, make the assignments in the usual manner as shown in the following table.

He starts from city 1 and goes to city 4; from city 4 to city 2; from city 2 to city 3; from city 3 to city 5; from city 5 to city 1.

Substituting values from original table: 4 + 7 + 6+ 4 + 5 = 26 hours.

In this chapter, we focussed on a special type of transportation problem where the objective was to allocate n different facilities to n different tasks. Although an assignment problem can be formulated as a linear programming problem, it is solved by a special method known as Hungarian Method. If the number of persons is the same as the number of jobs, the assignment problem is said to be balanced. If the number of jobs is different from the number of persons, the assignment problem is said to be unbalanced. Some assignment problems entail maximizing the profit, effectiveness, or layoff of an assignment of persons to tasks or of jobs to machines. The Hungarian Method can also solve such problems. Further, the Hungarian method can also be utilized for solving crew assignment problem and the travelling salesman problem.

Share This Article

Operations Research Simplified Back Next

Goal programming Linear programming Simplex Method Transportation Problem

Google OR-Tools

  • Google OR-Tools
  • Español – América Latina
  • Português – Brasil
  • Tiếng Việt

Solving an Assignment Problem

This section presents an example that shows how to solve an assignment problem using both the MIP solver and the CP-SAT solver.

In the example there are five workers (numbered 0-4) and four tasks (numbered 0-3). Note that there is one more worker than in the example in the Overview .

The costs of assigning workers to tasks are shown in the following table.

Worker Task 0 Task 1 Task 2 Task 3
90 80 75 70
35 85 55 65
125 95 90 95
45 110 95 115
50 100 90 100

The problem is to assign each worker to at most one task, with no two workers performing the same task, while minimizing the total cost. Since there are more workers than tasks, one worker will not be assigned a task.

MIP solution

The following sections describe how to solve the problem using the MPSolver wrapper .

Import the libraries

The following code imports the required libraries.

Create the data

The following code creates the data for the problem.

The costs array corresponds to the table of costs for assigning workers to tasks, shown above.

Declare the MIP solver

The following code declares the MIP solver.

Create the variables

The following code creates binary integer variables for the problem.

Create the constraints

Create the objective function.

The following code creates the objective function for the problem.

The value of the objective function is the total cost over all variables that are assigned the value 1 by the solver.

Invoke the solver

The following code invokes the solver.

Print the solution

The following code prints the solution to the problem.

Here is the output of the program.

Complete programs

Here are the complete programs for the MIP solution.

CP SAT solution

The following sections describe how to solve the problem using the CP-SAT solver.

Declare the model

The following code declares the CP-SAT model.

The following code sets up the data for the problem.

The following code creates the constraints for the problem.

Here are the complete programs for the CP-SAT solution.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License , and code samples are licensed under the Apache 2.0 License . For details, see the Google Developers Site Policies . Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2024-08-06 UTC.

solved example of assignment problem in operations research

  • Operations Research Problems

Statements and Solutions

  • © 2014
  • Raúl Poler 0 ,
  • Josefa Mula 1 ,
  • Manuel Díaz-Madroñero 2

Research Centre on Production Management and Engineering, Polytechnic University of Valencia, Alcoy, Spain

You can also search for this author in PubMed   Google Scholar

Escuela Politécnica Superior de Alcoy, Universidad Politécnica de Valencia, Alcoy, Spain

Universitat politècnica de valència, alcoy, spain.

  • Provides a valuable compendium of problems as a reference for undergraduate and graduate students, faculty, researchers and practitioners of operations research and management science
  • Identifies different operations management problems in order to improve the decision making process concerning readers
  • Addresses the following topics: Linear programming, integer programming, non-linear programming, network modeling, inventory theory, queue theory, tree decision, game theory, dynamic programming and markov processes

48k Accesses

11 Citations

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

Similar content being viewed by others.

solved example of assignment problem in operations research

Applications and Mathematical Modeling in Operations Research

solved example of assignment problem in operations research

From Operations Research to Dynamic Data Mining and Beyond

solved example of assignment problem in operations research

Introduction to Stochastic Optimisation and Game Theory

Dynamic programming.

  • Game Theory

Integer Programming

Inventory theory.

  • Linear and Non-Linear Programming

Markov Processes

  • Network Modeling
  • Queue Theory

Table of contents (10 chapters)

Front matter, linear programming.

  • Raúl Poler, Josefa Mula, Manuel Díaz-Madroñero

Non-Linear Programming

Network modelling, queueing theory, decision theory, games theory, back matter.

From the reviews:

Authors and Affiliations

Josefa Mula

Manuel Díaz-Madroñero

Bibliographic Information

Book Title : Operations Research Problems

Book Subtitle : Statements and Solutions

Authors : Raúl Poler, Josefa Mula, Manuel Díaz-Madroñero

DOI : https://doi.org/10.1007/978-1-4471-5577-5

Publisher : Springer London

eBook Packages : Engineering , Engineering (R0)

Copyright Information : Springer-Verlag London Ltd., part of Springer Nature 2014

Hardcover ISBN : 978-1-4471-5576-8 Published: 22 November 2013

Softcover ISBN : 978-1-4471-7190-4 Published: 23 August 2016

eBook ISBN : 978-1-4471-5577-5 Published: 08 November 2013

Edition Number : 1

Number of Pages : XV, 424

Number of Illustrations : 32 b/w illustrations, 55 illustrations in colour

Topics : Industrial and Production Engineering , Operations Research/Decision Theory , Game Theory, Economics, Social and Behav. Sciences

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. Operation Research 16: Formulation of Assignment Problem

    solved example of assignment problem in operations research

  2. Assignment Problem

    solved example of assignment problem in operations research

  3. Assignment problem

    solved example of assignment problem in operations research

  4. Assignment Problems

    solved example of assignment problem in operations research

  5. Lec-6 Simplex Method

    solved example of assignment problem in operations research

  6. Solved Operations Research Assignment #1 (5 marks) Problem:

    solved example of assignment problem in operations research

COMMENTS

  1. Solution of assignment problems (Hungarian Method)

    Example 10.9. Solve the following assignment problem. Solution: Since the number of columns is less than the number of rows, given assignment problem is unbalanced one. To balance it , introduce a dummy column with all the entries zero. The revised assignment problem is. Here only 3 tasks can be assigned to 3 men.

  2. PDF Unit 4: ASSIGNMENT PROBLEM

    Problem 4. Job shop needs to assign 4 jobs to 4 workers. The cost of performing a job is a function of the skills of the workers. Table summarizes the cost of the assignments. Worker1 cannot do job3, and worker 3 cannot do job 4. Determine the optimal assignment using the Hungarian method. Job.

  3. How to Solve the Assignment Problem: A Complete Guide

    Step 1: Set up the cost matrix. The first step in solving the assignment problem is to set up the cost matrix, which represents the cost of assigning a task to an agent. The matrix should be square and have the same number of rows and columns as the number of tasks and agents, respectively.

  4. Assignment Problem: Meaning, Methods and Variations

    After reading this article you will learn about:- 1. Meaning of Assignment Problem 2. Definition of Assignment Problem 3. Mathematical Formulation 4. Hungarian Method 5. Variations. Meaning of Assignment Problem: An assignment problem is a particular case of transportation problem where the objective is to assign a number of resources to an equal number of activities so as to minimise total ...

  5. How to Solve an Assignment Problem Using the Hungarian Method

    In this lesson we learn what is an assignment problem and how we can solve it using the Hungarian method.

  6. Operations Research with R

    The assignment problem represents a special case of linear programming problem used for allocating resources (mostly workforce) in an optimal way; it is a highly useful tool for operation and project managers for optimizing costs. The lpSolve R package allows us to solve LP assignment problems with just very few lines of code.

  7. PDF UNIT 5 ASSIGNMENT PROBLEMS

    e minimisation problem.3. The assignment problem wherein the number of rows is not equal to the number of columns is said t. be an unbalanced problem. Such a problem is handled by introducing dummy row(s) if the number of rows is less than the number of columns and dummy column(s) if the number of columns is le.

  8. Operations Research 07D: Assignment Problem & Hungarian Method

    Textbooks: https://amzn.to/2VgimyJhttps://amzn.to/2CHalvxhttps://amzn.to/2Svk11kIn this video, we'll talk about how to solve a special case of the transporta...

  9. Assignment problem: Hungarian method 3

    The Hungarian method is a combinatorial optimization algorithm which was developed and published by Harold Kuhn in 1955. This method was originally invented for the best assignment of a set of persons to a set of jobs. It is a special case of the transportation problem. The algorithm finds an optimal assignment for a given "n x n" cost matrix.

  10. ASSIGNMENT PROBLEM (OPERATIONS RESEARCH) USING PYTHON

    The Assignment Problem is a special type of Linear Programming Problem based on the following assumptions: However, solving this task for increasing number of jobs and/or resources calls for…

  11. Chapter 5: Assignment Problem

    5.1 INTRODUCTION. The assignment problem is one of the special type of transportation problem for which more efficient (less-time consuming) solution method has been devised by KUHN (1956) and FLOOD (1956). The justification of the steps leading to the solution is based on theorems proved by Hungarian mathematicians KONEIG (1950) and EGERVARY ...

  12. Solve the assignment problem online

    Solve an assignment problem online. Fill in the cost matrix of an assignment problem and click on 'Solve'. The optimal assignment will be determined and a step by step explanation of the hungarian algorithm will be given. Fill in the cost matrix (random cost matrix):

  13. Assignment Problem

    Title: "Cracking the Balanced Assignment Problem in Operations Research!"🔍 Uncover the secrets of the Balanced Assignment Problem in this quick guide to Ope...

  14. Unbalanced Assignment Problem: Definition, Formulation, and Solution

    The Unbalanced Assignment Problem is an extension of the Assignment Problem in OR, where the number of tasks and workers is not equal. In the UAP, some tasks may remain unassigned, while some workers may not be assigned any task. The objective is still to minimize the total cost or time required to complete the assigned tasks, but the UAP has ...

  15. PDF ASSIGNMENT PROBLEM

    EXAMPLE OF ASSIGMENT PROBLEMS PROBLEM 1: Solve the following assignment problem shown in Table using Hungarian method. The matrix entries are processing time of each man in hours. 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 I II III IV V 1 20 15 18 20 25 2 18 20 12 14 15 3 21 23 25 27 25

  16. Assignment problem: Hungarian method 1

    The Hungarian Method is an algorithm developed by Harold Kuhn to solve assignment problems in polynomial time. The assignment problem is a special case of the transportation problem in which the number of provider and consumer are equal and supply (ai) and demand (bj) amounts are defined as 1. Typical examples of assignment problems are:

  17. Assignment Problem, Maximization Example, Hungarian Method

    The Hungarian Method can also solve such assignment problems, as it is easy to obtain an equivalent minimization problem by converting every number in the matrix to an opportunity loss. The conversion is accomplished by subtracting all the elements of the given matrix from the highest element. It turns out that minimizing opportunity loss ...

  18. Travelling Salesman Problem, Operations Research

    Repeating step 3 on the reduced matrix, we get the following assignments. Table. The above solution suggests that the salesman should go from city 1 to city 4, city 4 to city 2, and then city 2 to 1 (original starting point). The above solution is not a solution to the travelling salesman problem as he visits city 1 twice.

  19. Assignment Problem

    The problem is a special form of the transportation problem and, as such, has an optimal solution in which each variable is either zero or one. The problem can be solved by the simplex method, but special assignment problem algorithms tend to be computationally more efficient.

  20. Sharpen Your Skills: 25 Operations Research Problems

    Operations research (OR) offers a powerful toolkit for solving optimization problems across diverse fields. These are a curated collection of 25 solved OR problems categorized by key problem types.

  21. Solving an Assignment Problem

    This section presents an example that shows how to solve an assignment problem using both the MIP solver and the CP-SAT solver. Example. In the example there are five workers (numbered 0-4) and four tasks (numbered 0-3). Note that there is one more worker than in the example in the Overview.

  22. Operations Research Problems: Statements and Solutions

    The objective of this book is to provide a valuable compendium of problems as a reference for undergraduate and graduate students, faculty, researchers and practitioners of operations research and management science. These problems can serve as a basis for the development or study of assignments and exams. Also, they can be useful as a guide ...

  23. Transportation AND Assignment Problems

    OPERATIONS RESEARCH (UE18IE301) UNIT-3 TRANSPORTATION AND ASSIGNMENT PROBLEMS CONTENTS Sl. No. Name of the Topic 1. Formulation of Transportation model, Definition of Basic feasible solution. 2. Basic feasible solution by using different methods: North-west corner method-procedure and problems. 3.