Scientific Reports
What this handout is about.
This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.
Background and pre-writing
Why do we write research reports.
You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?
To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.
So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:
- They want to gather the information presented.
- They want to know that the findings are legitimate.
Your job as a writer, then, is to fulfill these two goals.
How do I do that?
Good question. Here is the basic format scientists have designed for research reports:
- Introduction
Methods and Materials
This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.
The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.
states your hypothesis | explains how you derived that hypothesis and how it connects to previous research; gives the purpose of the experiment/study | |
details how you tested your hypothesis | clarifies why you performed your study in that particular way | |
provides raw (i.e., uninterpreted) data collected | (perhaps) expresses the data in table form, as an easy-to-read figure, or as percentages/ratios | |
considers whether the data you obtained support the hypothesis | explores the implications of your finding and judges the potential limitations of your experimental design |
Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.
Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.
What should I do before drafting the lab report?
The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:
- What are we going to do in this lab? (That is, what’s the procedure?)
- Why are we going to do it that way?
- What are we hoping to learn from this experiment?
- Why would we benefit from this knowledge?
- Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
- Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
- Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
- Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
- Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?
Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.
Introductions
How do i write a strong introduction.
For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.
The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.
For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.
As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.
Not a hypothesis:
“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”
Hypothesis:
“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”
Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.
Justify your hypothesis
You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?
Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.
Background/previous research
This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.
Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.
Organization of this section
Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:
“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”
Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.
How do I write a strong Materials and Methods section?
As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.
Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.
With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.
Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:
- How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
- Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
- Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.
Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:
“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”
Structure and style
Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.
- Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
- Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
- Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
- Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
- Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)
Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.
How do I write a strong Results section?
Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.
Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.
Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.
This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:
“Table 1 lists the rates of solubility for each substance”
“Solubility increased as the temperature of the solution increased (see Figure 1).”
If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.
Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:
“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”
This point isn’t debatable—you’re just pointing out what the data show.
As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)
You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.
Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?
As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.
As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:
As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.
When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:
- Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
- Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
- Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:
It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:
The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.
- Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
1058 |
432 |
7 |
- Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).
How do I include figures in my report?
Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.
When should you use a figure?
Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.
If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.
Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.
Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.
At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.
Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:
- Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
- Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
- Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
- Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
- Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
- Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
- If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
- Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
- If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.
How do I write a strong Discussion section?
The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.
Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:
Explain whether the data support your hypothesis
- Acknowledge any anomalous data or deviations from what you expected
Derive conclusions, based on your findings, about the process you’re studying
- Relate your findings to earlier work in the same area (if you can)
Explore the theoretical and/or practical implications of your findings
Let’s look at some dos and don’ts for each of these objectives.
This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,
“The hypothesis that temperature change would not affect solubility was not supported by the data.”
Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.
Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).
Acknowledge any anomalous data, or deviations from what you expected
You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.
Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.
If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.
This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.
Relate your findings to previous work in the field (if possible)
We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.
If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)
This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.
Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.
Works consulted
We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.
American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.
Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.
Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.
Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.
Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.
Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.
Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.
Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.
Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.
Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.
You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill
Make a Gift
An official website of the United States government
Official websites use .gov A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
- Publications
- Account settings
- Advanced Search
- Journal List
Successful Scientific Writing and Publishing: A Step-by-Step Approach
John k iskander , md, mph, sara beth wolicki , mph, cph, rebecca t leeb , phd, paul z siegel , md, mph.
- Author information
- Article notes
- Copyright and License information
Corresponding Author: John Iskander, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, GA. Telephone: 404-639-8889. Email: [email protected] .
Corresponding author.
Collection date 2018.
This is a publication of the U.S. Government. This publication is in the public domain and is therefore without copyright. All text from this work may be reprinted freely. Use of these materials should be properly cited.
Scientific writing and publication are essential to advancing knowledge and practice in public health, but prospective authors face substantial challenges. Authors can overcome barriers, such as lack of understanding about scientific writing and the publishing process, with training and resources. The objective of this article is to provide guidance and practical recommendations to help both inexperienced and experienced authors working in public health settings to more efficiently publish the results of their work in the peer-reviewed literature. We include an overview of basic scientific writing principles, a detailed description of the sections of an original research article, and practical recommendations for selecting a journal and responding to peer review comments. The overall approach and strategies presented are intended to contribute to individual career development while also increasing the external validity of published literature and promoting quality public health science.
Introduction
Publishing in the peer-reviewed literature is essential to advancing science and its translation to practice in public health ( 1 , 2 ). The public health workforce is diverse and practices in a variety of settings ( 3 ). For some public health professionals, writing and publishing the results of their work is a requirement. Others, such as program managers, policy makers, or health educators, may see publishing as being outside the scope of their responsibilities ( 4 ).
Disseminating new knowledge via writing and publishing is vital both to authors and to the field of public health ( 5 ). On an individual level, publishing is associated with professional development and career advancement ( 6 ). Publications share new research, results, and methods in a trusted format and advance scientific knowledge and practice ( 1 , 7 ). As more public health professionals are empowered to publish, the science and practice of public health will advance ( 1 ).
Unfortunately, prospective authors face barriers to publishing their work, including navigating the process of scientific writing and publishing, which can be time-consuming and cumbersome. Often, public health professionals lack both training opportunities and understanding of the process ( 8 ). To address these barriers and encourage public health professionals to publish their findings, the senior author (P.Z.S.) and others developed Successful Scientific Writing (SSW), a course about scientific writing and publishing. Over the past 30 years, this course has been taught to thousands of public health professionals, as well as hundreds of students at multiple graduate schools of public health. An unpublished longitudinal survey of course participants indicated that two-thirds agreed that SSW had helped them to publish a scientific manuscript or have a conference abstract accepted. The course content has been translated into this manuscript. The objective of this article is to provide prospective authors with the tools needed to write original research articles of high quality that have a good chance of being published.
Basic Recommendations for Scientific Writing
Prospective authors need to know and tailor their writing to the audience. When writing for scientific journals, 4 fundamental recommendations are: clearly stating the usefulness of the study, formulating a key message, limiting unnecessary words, and using strategic sentence structure.
To demonstrate usefulness, focus on how the study addresses a meaningful gap in current knowledge or understanding. What critical piece of information does the study provide that will help solve an important public health problem? For example, if a particular group of people is at higher risk for a specific condition, but the magnitude of that risk is unknown, a study to quantify the risk could be important for measuring the population’s burden of disease.
Scientific articles should have a clear and concise take-home message. Typically, this is expressed in 1 to 2 sentences that summarize the main point of the paper. This message can be used to focus the presentation of background information, results, and discussion of findings. As an early step in the drafting of an article, we recommend writing out the take-home message and sharing it with co-authors for their review and comment. Authors who know their key point are better able to keep their writing within the scope of the article and present information more succinctly. Once an initial draft of the manuscript is complete, the take-home message can be used to review the content and remove needless words, sentences, or paragraphs.
Concise writing improves the clarity of an article. Including additional words or clauses can divert from the main message and confuse the reader. Additionally, journal articles are typically limited by word count. The most important words and phrases to eliminate are those that do not add meaning, or are duplicative. Often, cutting adjectives or parenthetical statements results in a more concise paper that is also easier to read.
Sentence structure strongly influences the readability and comprehension of journal articles. Twenty to 25 words is a reasonable range for maximum sentence length. Limit the number of clauses per sentence, and place the most important or relevant clause at the end of the sentence ( 9 ). Consider the sentences:
By using these tips and tricks, an author may write and publish an additional 2 articles a year.
An author may write and publish an additional 2 articles a year by using these tips and tricks.
The focus of the first sentence is on the impact of using the tips and tricks, that is, 2 more articles published per year. In contrast, the second sentence focuses on the tips and tricks themselves.
Authors should use the active voice whenever possible. Consider the following example:
Active voice: Authors who use the active voice write more clearly.
Passive voice: Clarity of writing is promoted by the use of the active voice.
The active voice specifies who is doing the action described in the sentence. Using the active voice improves clarity and understanding, and generally uses fewer words. Scientific writing includes both active and passive voice, but authors should be intentional with their use of either one.
Sections of an Original Research Article
Original research articles make up most of the peer-reviewed literature ( 10 ), follow a standardized format, and are the focus of this article. The 4 main sections are the introduction, methods, results, and discussion, sometimes referred to by the initialism, IMRAD. These 4 sections are referred to as the body of an article. Two additional components of all peer-reviewed articles are the title and the abstract. Each section’s purpose and key components, along with specific recommendations for writing each section, are listed below.
Title. The purpose of a title is twofold: to provide an accurate and informative summary and to attract the target audience. Both prospective readers and database search engines use the title to screen articles for relevance ( 2 ). All titles should clearly state the topic being studied. The topic includes the who, what, when, and where of the study. Along with the topic, select 1 or 2 of the following items to include within the title: methods, results, conclusions, or named data set or study. The items chosen should emphasize what is new and useful about the study. Some sources recommend limiting the title to less than 150 characters ( 2 ). Articles with shorter titles are more frequently cited than articles with longer titles ( 11 ). Several title options are possible for the same study ( Figure ).
Two examples of title options for a single study.
Abstract . The abstract serves 2 key functions. Journals may screen articles for potential publication by using the abstract alone ( 12 ), and readers may use the abstract to decide whether to read further. Therefore, it is critical to produce an accurate and clear abstract that highlights the major purpose of the study, basic procedures, main findings, and principal conclusions ( 12 ). Most abstracts have a word limit and can be either structured following IMRAD, or unstructured. The abstract needs to stand alone from the article and tell the most important parts of the scientific story up front.
Introduction . The purpose of the introduction is to explain how the study sought to create knowledge that is new and useful. The introduction section may often require only 3 paragraphs. First, describe the scope, nature, or magnitude of the problem being addressed. Next, clearly articulate why better understanding this problem is useful, including what is currently known and the limitations of relevant previous studies. Finally, explain what the present study adds to the knowledge base. Explicitly state whether data were collected in a unique way or obtained from a previously unstudied data set or population. Presenting both the usefulness and novelty of the approach taken will prepare the reader for the remaining sections of the article.
Methods . The methods section provides the information necessary to allow others, given the same data, to recreate the analysis. It describes exactly how data relevant to the study purpose were collected, organized, and analyzed. The methods section describes the process of conducting the study — from how the sample was selected to which statistical methods were used to analyze the data. Authors should clearly name, define, and describe each study variable. Some journals allow detailed methods to be included in an appendix or supplementary document. If the analysis involves a commonly used public health data set, such as the Behavioral Risk Factor Surveillance System ( 13 ), general aspects of the data set can be provided to readers by using references. Because what was done is typically more important than who did it, use of the passive voice is often appropriate when describing methods. For example, “The study was a group randomized, controlled trial. A coin was tossed to select an intervention group and a control group.”
Results . The results section describes the main outcomes of the study or analysis but does not interpret the findings or place them in the context of previous research. It is important that the results be logically organized. Suggested organization strategies include presenting results pertaining to the entire population first, and then subgroup analyses, or presenting results according to increasing complexity of analysis, starting with demographic results before proceeding to univariate and multivariate analyses. Authors wishing to draw special attention to novel or unexpected results can present them first.
One strategy for writing the results section is to start by first drafting the figures and tables. Figures, which typically show trends or relationships, and tables, which show specific data points, should each support a main outcome of the study. Identify the figures and tables that best describe the findings and relate to the study’s purpose, and then develop 1 to 2 sentences summarizing each one. Data not relevant to the study purpose may be excluded, summarized briefly in the text, or included in supplemental data sets. When finalizing figures, ensure that axes are labeled and that readers can understand figures without having to refer to accompanying text.
Discussion . In the discussion section, authors interpret the results of their study within the context of both the related literature and the specific scientific gap the study was intended to fill. The discussion does not introduce results that were not presented in the results section. One way authors can focus their discussion is to limit this section to 4 paragraphs: start by reinforcing the study’s take-home message(s), contextualize key results within the relevant literature, state the study limitations, and lastly, make recommendations for further research or policy and practice changes. Authors can support assertions made in the discussion with either their own findings or by referencing related research. By interpreting their own study results and comparing them to others in the literature, authors can emphasize findings that are unique, useful, and relevant. Present study limitations clearly and without apology. Finally, state the implications of the study and provide recommendations or next steps, for example, further research into remaining gaps or changes to practice or policy. Statements or recommendations regarding policy may use the passive voice, especially in instances where the action to be taken is more important than who will implement the action.
Beginning the Writing Process
The process of writing a scientific article occurs before, during, and after conducting the study or analyses. Conducting a literature review is crucial to confirm the existence of the evidence gap that the planned analysis seeks to fill. Because literature searches are often part of applying for research funding or developing a study protocol, the citations used in the grant application or study proposal can also be used in subsequent manuscripts. Full-text databases such as PubMed Central ( 14 ), NIH RePORT ( 15 ), and CDC Stacks ( 16 ) can be useful when performing literature reviews. Authors should familiarize themselves with databases that are accessible through their institution and any assistance that may be available from reference librarians or interlibrary loan systems. Using citation management software is one way to establish and maintain a working reference list. Authors should clearly understand the distinction between primary and secondary references, and ensure that they are knowledgeable about the content of any primary or secondary reference that they cite.
Review of the literature may continue while organizing the material and writing begins. One way to organize material is to create an outline for the paper. Another way is to begin drafting small sections of the article such as the introduction. Starting a preliminary draft forces authors to establish the scope of their analysis and clearly articulate what is new and novel about the study. Furthermore, using information from the study protocol or proposal allows authors to draft the methods and part of the results sections while the study is in progress. Planning potential data comparisons or drafting “table shells” will help to ensure that the study team has collected all the necessary data. Drafting these preliminary sections early during the writing process and seeking feedback from co-authors and colleagues may help authors avoid potential pitfalls, including misunderstandings about study objectives.
The next step is to conduct the study or analyses and use the resulting data to fill in the draft table shells. The initial results will most likely require secondary analyses, that is, exploring the data in ways in addition to those originally planned. Authors should ensure that they regularly update their methods section to describe all changes to data analysis.
After completing table shells, authors should summarize the key finding of each table or figure in a sentence or two. Presenting preliminary results at meetings, conferences, and internal seminars is an established way to solicit feedback. Authors should pay close attention to questions asked by the audience, treating them as an informal opportunity for peer review. On the basis of the questions and feedback received, authors can incorporate revisions and improvements into subsequent drafts of the manuscript.
The relevant literature should be revisited periodically while writing to ensure knowledge of the most recent publications about the manuscript topic. Authors should focus on content and key message during the process of writing the first draft and should not spend too much time on issues of grammar or style. Drafts, or portions of drafts, should be shared frequently with trusted colleagues. Their recommendations should be reviewed and incorporated when they will improve the manuscript’s overall clarity.
For most authors, revising drafts of the manuscript will be the most time-consuming task involved in writing a paper. By regularly checking in with coauthors and colleagues, authors can adopt a systematic approach to rewriting. When the author has completed a draft of the manuscript, he or she should revisit the key take-home message to ensure that it still matches the final data and analysis. At this point, final comments and approval of the manuscript by coauthors can be sought.
Authors should then seek to identify journals most likely to be interested in considering the study for publication. Initial questions to consider when selecting a journal include:
Which audience is most interested in the paper’s message?
Would clinicians, public health practitioners, policy makers, scientists, or a broader audience find this useful in their field or practice?
Do colleagues have prior experience submitting a manuscript to this journal?
Is the journal indexed and peer-reviewed?
Is the journal subscription or open-access and are there any processing fees?
How competitive is the journal?
Authors should seek to balance the desire to be published in a top-tier journal (eg, Journal of the American Medical Association, BMJ, or Lancet) against the statistical likelihood of rejection. Submitting the paper initially to a journal more focused on the paper’s target audience may result in a greater chance of acceptance, as well as more timely dissemination of findings that can be translated into practice. Most of the 50 to 75 manuscripts published each week by authors from the Centers for Disease Control and Prevention (CDC) are published in specialty and subspecialty journals, rather than in top-tier journals ( 17 ).
The target journal’s website will include author guidelines, which will contain specific information about format requirements (eg, font, line spacing, section order, reference style and limit, table and figure formatting), authorship criteria, article types, and word limits for articles and abstracts.
We recommend returning to the previously drafted abstract and ensuring that it complies with the journal’s format and word limit. Authors should also verify that any changes made to the methods or results sections during the article’s drafting are reflected in the final version of the abstract. The abstract should not be written hurriedly just before submitting the manuscript; it is often apparent to editors and reviewers when this has happened. A cover letter to accompany the submission should be drafted; new and useful findings and the key message should be included.
Before submitting the manuscript and cover letter, authors should perform a final check to ensure that their paper complies with all journal requirements. Journals may elect to reject certain submissions on the basis of review of the abstract, or may send them to peer reviewers (typically 2 or 3) for consultation. Occasionally, on the basis of peer reviews, the journal will request only minor changes before accepting the paper for publication. Much more frequently, authors will receive a request to revise and resubmit their manuscript, taking into account peer review comments. Authors should recognize that while revise-and-resubmit requests may state that the manuscript is not acceptable in its current form, this does not constitute a rejection of the article. Authors have several options in responding to peer review comments:
Performing additional analyses and updating the article appropriately
Declining to perform additional analyses, but providing an explanation (eg, because the requested analysis goes beyond the scope of the article)
Providing updated references
Acknowledging reviewer comments that are simply comments without making changes
In addition to submitting a revised manuscript, authors should include a cover letter in which they list peer reviewer comments, along with the revisions they have made to the manuscript and their reply to the comment. The tone of such letters should be thankful and polite, but authors should make clear areas of disagreement with peer reviewers, and explain why they disagree. During the peer review process, authors should continue to consult with colleagues, especially ones who have more experience with the specific journal or with the peer review process.
There is no secret to successful scientific writing and publishing. By adopting a systematic approach and by regularly seeking feedback from trusted colleagues throughout the study, writing, and article submission process, authors can increase their likelihood of not only publishing original research articles of high quality but also becoming more scientifically productive overall.
Acknowledgments
The authors acknowledge PCD ’s former Associate Editor, Richard A. Goodman, MD, MPH, who, while serving as Editor in Chief of CDC’s Morbidity and Mortality Weekly Report Series, initiated a curriculum on scientific writing for training CDC’s Epidemic Intelligence Service Officers and other CDC public health professionals, and with whom the senior author of this article (P.Z.S.) collaborated in expanding training methods and contents, some of which are contained in this article. The authors acknowledge Juan Carlos Zevallos, MD, for his thoughtful critique and careful editing of previous Successful Scientific Writing materials. We also thank Shira Eisenberg for editorial assistance with the manuscript. This publication was supported by the Cooperative Agreement no. 1U360E000002 from CDC and the Association of Schools and Programs of Public Health. The findings and conclusions of this article do not necessarily represent the official views of CDC or the Association of Schools and Programs of Public Health. Names of journals and citation databases are provided for identification purposes only and do not constitute any endorsement by CDC.
The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions.
Suggested citation for this article: Iskander JK, Wolicki SB, Leeb RT, Siegel PZ. Successful Scientific Writing and Publishing: A Step-by-Step Approach. Prev Chronic Dis 2018;15:180085. DOI: https://doi.org/10.5888/pcd15.180085 .
- 1. Azer SA, Dupras DM, Azer S. Writing for publication in medical education in high impact journals. Eur Rev Med Pharmacol Sci 2014;18(19):2966–81. [ PubMed ] [ Google Scholar ]
- 2. Vitse CL, Poland GA. Writing a scientific paper — a brief guide for new investigators. Vaccine 2017;35(5):722–8. 10.1016/j.vaccine.2016.11.091 [ DOI ] [ PubMed ] [ Google Scholar ]
- 3. Sellers K, Leider JP, Harper E, Castrucci BC, Bharthapudi K, Liss-Levinson R, et al. The Public Health Workforce Interests and Needs Survey: the first national survey of state health agency employees. J Public Health Manag Pract 2015;21(Suppl 6):S13–27. 10.1097/PHH.0000000000000331 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- 4. Salas-Lopez D, Deitrick L, Mahady ET, Moser K, Gertner EJ, Sabino JN. Getting published in an academic-community hospital: the success of writing groups. J Gen Intern Med 2012;27(1):113–6. 10.1007/s11606-011-1872-9 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- 5. Azer SA, Ramani S, Peterson R. Becoming a peer reviewer to medical education journals. Med Teach 2012;34(9):698–704. 10.3109/0142159X.2012.687488 [ DOI ] [ PubMed ] [ Google Scholar ]
- 6. Baldwin C, Chandler GE. Improving faculty publication output: the role of a writing coach. J Prof Nurs 2002;18(1):8–15. 10.1053/jpnu.2002.30896 [ DOI ] [ PubMed ] [ Google Scholar ]
- 7. Nicholas D, Watkinson A, Jamali H, Herman E, Tenopir C, Volentine R, et al. Peer review: still king in the digital age. Learn Publ 2015;28(1):15–21. 10.1087/20150104 [ DOI ] [ Google Scholar ]
- 8. Crowson MG. A crash course in medical writing for health profession students. J Cancer Educ 2013;28(3):554–7. 10.1007/s13187-013-0502-0 [ DOI ] [ PubMed ] [ Google Scholar ]
- 9. Gopen GD, Swan JA. The science of scientific writing. Am Sci 1990;78(6):550–8. [ Google Scholar ]
- 10. Ecarnot F, Seronde MF, Chopard R, Schiele F, Meneveau N. Writing a scientific article: a step-by-step guide for beginners. Eur Geriatr Med 2015;6(6):573–9. 10.1016/j.eurger.2015.08.005 [ DOI ] [ Google Scholar ]
- 11. Letchford A, Moat HS, Preis T. The advantage of short paper titles. R Soc Open Sci 2015;2(8):150266. 10.1098/rsos.150266 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- 12. Groves T, Abbasi K. Screening research papers by reading abstracts. BMJ 2004;329(7464):470–1. 10.1136/bmj.329.7464.470 [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]
- 13. Xu F, Mawokomatanda T, Flegel D, Pierannunzi C, Garvin W, Chowdhury P, et al. ; Centers for Disease Control and Prevention (CDC). Surveillance for certain health behaviors among states and selected local areas — Behavioral Risk Factor Surveillance System, United States, 2011. MMWR Surveill Summ 2014;63(9):1–149. [ PubMed ] [ Google Scholar ]
- 14. PubMed Central https://www.ncbi.nlm.nih.gov/pmc/ . Accessed April 22, 2018.
- 15. National Institutes of Health Research Portfolio Online Reporting Tools (RePORT) https://report.nih.gov/ .Accessed April 25, 2018.
- 16. CDC Stacks. https://stacks.cdc.gov/welcome . Accessed April 25, 2018.
- 17. Iskander J, Bang G, Stupp E, Connick K, Gomez O, Gidudu J. Articles Published and Downloaded by Public Health Scientists: Analysis of Data From the CDC Public Health Library, 2011-2013. J Public Health Manag Pract 2016;22(4):409–14. 10.1097/PHH.0000000000000277 [ DOI ] [ PubMed ] [ Google Scholar ]
- View on publisher site
- PDF (292.0 KB)
- Collections
Similar articles
Cited by other articles, links to ncbi databases.
- Download .nbib .nbib
- Format: AMA APA MLA NLM
Add to Collections
Formatting Science Reports
This section describes an organizational structure commonly used to report experimental research in many scientific disciplines, the IMRAD format: I ntroduction, M ethods, R esults, And D iscussion.
When and when not to use the IMRAD format
Although most scientific reports use the IMRAD format, there are some exceptions.
This format is usually not used in reports describing other kinds of research, such as field or case studies, in which headings are more likely to differ according to discipline. Although the main headings are standard for many scientific fields, details may vary; check with your instructor, or, if submitting an article to a journal, refer to the instructions to authors.
Developing a Title
Titles should.
- Describe contents clearly and precisely, so that readers can decide whether to read the report
- Provide key words for indexing
Titles should NOT
- Include wasted words such as “studies on,” “an investigation of”
- Use abbreviations and jargon
- Use “cute” language
Good Titles
The Relationship of Luteinizing Hormone to Obesity in the Zucker Rat
Poor Titles
An Investigation of Hormone Secretion and Weight in Rats Fat Rats: Are Their Hormones Different?
The Abstract
The guidelines below address issues to consider when writing an abstract.
What is the report about, in miniature and without specific details?
- State main objectives. (What did you investigate? Why?)
- Describe methods. (What did you do?)
- Summarize the most important results. (What did you find out?)
- State major conclusions and significance. (What do your results mean? So what?)
What to avoid:
- Do not include references to figures, tables, or sources.
- Do not include information not in report.
Additional tips:
- Find out maximum length (may vary from 50 to 300+ words).
- Process: Extract key points from each section. Condense in successive revisions.
The Introduction
Guidelines for effective scientific report introductions.
What is the problem?
- Describe the problem investigated.
- Summarize relevant research to provide context, key terms, and concepts so your reader can understand the experiment.
Why is it important?
- Review relevant research to provide rationale. (What conflict or unanswered question, untested population, untried method in existing research does your experiment address? What findings of others are you challenging or extending?)
What solution (or step toward a solution) do you propose?
- Briefly describe your experiment: hypothesis(es), research question(s); general experimental design or method; justification of method if alternatives exist.
- Move from general to specific: problem in real world/research literature –> your experiment.
- Engage your reader: answer the questions, “What did you do?” “Why should I care?”
- Make clear the links between problem and solution, question asked and research design, prior research and your experiment.
- Be selective, not exhaustive, in choosing studies to cite and amount of detail to include. (In general, the more relevant an article is to your study, the more space it deserves and the later in the Introduction it appears.)
- Ask your instructor whether to summarize results and/or conclusions in the Introduction.
Methods Section
Below are some questions to consider for effective methods sections in scientific reports.
How did you study the problem?
- Briefly explain the general type of scientific procedure you used.
What did you use?
(May be subheaded as Materials)
- Describe what materials, subjects, and equipment (chemicals, experimental animals, apparatus, etc.) you used. (These may be subheaded Animals, Reagents, etc.)
How did you proceed?
(May be subheaded as Methods or Procedures)
- Explain the steps you took in your experiment. (These may be subheaded by experiment, types of assay, etc.)
- Provide enough detail for replication. For a journal article, include, for example, genus, species, strain of organisms; their source, living conditions, and care; and sources (manufacturer, location) of chemicals and apparatus.
- Order procedures chronologically or by type of procedure (subheaded) and chronologically within type.
- Use past tense to describe what you did.
- Quantify when possible: concentrations, measurements, amounts (all metric); times (24-hour clock); temperatures (centigrade)
- Don’t include details of common statistical procedures.
- Don’t mix results with procedures.
Results Section
The section below offers some questions asked for effective results sections in scientific reports.
What did you observe?
For each experiment or procedure:
- Briefly describe experiment without detail of Methods section (a sentence or two).
- Representative: most common
- Best Case: best example of ideal or exception
- from most to least important
- from simple to complex
- organ by organ; chemical class by chemical class
- Use past tense to describe what happened.
- Don’t simply repeat table data; select .
- Don’t interpret results.
- Avoid extra words: “It is shown in Table 1 that X induced Y” –> “X induced Y (Table 1).”
Discussion Section
The table below offers some questions effective discussion sections in scientific reports address.
What do your observations mean?
- Summarize the most important findings at the beginning.
What conclusions can you draw?
For each major result:
- Describe the patterns, principles, relationships your results show.
- Explain how your results relate to expectations and to literature cited in your Introduction. Do they agree, contradict, or are they exceptions to the rule?
- Explain plausibly any agreements, contradictions, or exceptions.
- Describe what additional research might resolve contradictions or explain exceptions.
How do your results fit into a broader context?
- Suggest the theoretical implications of your results.
- Suggest practical applications of your results?
- Extend your findings to other situations or other species.
- Give the big picture: do your findings help us understand a broader topic?
- Move from specific to general: your finding(s) –> literature, theory, practice.
- Don’t ignore or bury the major issue. Did the study achieve the goal (resolve the problem, answer the question, support the hypothesis) presented in the Introduction?
- Give evidence for each conclusion.
- Discuss possible reasons for expected and unexpected findings.
- Don’t overgeneralize.
- Don’t ignore deviations in your data.
- Avoid speculation that cannot be tested in the foreseeable future.
Academic and Professional Writing
This is an accordion element with a series of buttons that open and close related content panels.
Analysis Papers
Reading Poetry
A Short Guide to Close Reading for Literary Analysis
Using Literary Quotations
Play Reviews
Writing a Rhetorical Précis to Analyze Nonfiction Texts
Incorporating Interview Data
Grant Proposals
Planning and Writing a Grant Proposal: The Basics
Additional Resources for Grants and Proposal Writing
Job Materials and Application Essays
Writing Personal Statements for Ph.D. Programs
- Before you begin: useful tips for writing your essay
- Guided brainstorming exercises
- Get more help with your essay
- Frequently Asked Questions
Resume Writing Tips
CV Writing Tips
Cover Letters
Business Letters
Proposals and Dissertations
Resources for Proposal Writers
Resources for Dissertators
Research Papers
Planning and Writing Research Papers
Quoting and Paraphrasing
Writing Annotated Bibliographies
Creating Poster Presentations
Writing an Abstract for Your Research Paper
Thank-You Notes
Advice for Students Writing Thank-You Notes to Donors
Reading for a Review
Critical Reviews
Writing a Review of Literature
Scientific Reports
Scientific Report Format
Sample Lab Assignment
Writing for the Web
Writing an Effective Blog Post
Writing for Social Media: A Guide for Academics
When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.
- PLOS Biology
- PLOS Climate
- PLOS Complex Systems
- PLOS Computational Biology
- PLOS Digital Health
- PLOS Genetics
- PLOS Global Public Health
- PLOS Medicine
- PLOS Mental Health
- PLOS Neglected Tropical Diseases
- PLOS Pathogens
- PLOS Sustainability and Transformation
- PLOS Collections
Welcome to the PLOS Writing Center
Your source for scientific writing & publishing essentials.
A collection of free, practical guides and hands-on resources for authors looking to improve their scientific publishing skillset.
ARTICLE-WRITING ESSENTIALS
Your title is the first thing anyone who reads your article is going to see, and for many it will be where they stop reading. Learn how to write a title that helps readers find your article, draws your audience in and sets the stage for your research!
The abstract is your chance to let your readers know what they can expect from your article. Learn how to write a clear, and concise abstract that will keep your audience reading.
A clear methods section impacts editorial evaluation and readers’ understanding, and is also the backbone of transparency and replicability. Learn what to include in your methods section, and how much detail is appropriate.
In many fields, a statistical analysis forms the heart of both the methods and results sections of a manuscript. Learn how to report statistical analyses, and what other context is important for publication success and future reproducibility.
The discussion section contains the results and outcomes of a study. An effective discussion informs readers what can be learned from your experiment and provides context for the results.
Ensuring your manuscript is well-written makes it easier for editors, reviewers and readers to understand your work. Avoiding language errors can help accelerate review and minimize delays in the publication of your research.
Discover how to navigate the peer review and publishing process, beyond writing your article.
The path to publication can be unsettling when you’re unsure what’s happening with your paper. Learn about staple journal workflows to see the detailed steps required for ensuring a rigorous and ethical publication.
Reputable journals screen for ethics at submission—and inability to pass ethics checks is one of the most common reasons for rejection. Unfortunately, once a study has begun, it’s often too late to secure the requisite ethical reviews and clearances. Learn how to prepare for publication success by ensuring your study meets all ethical requirements before work begins.
From preregistration, to preprints, to publication—learn how and when to share your study.
How you store your data matters. Even after you publish your article, your data needs to be accessible and useable for the long term so that other researchers can continue building on your work. Good data management practices make your data discoverable and easy to use, promote a strong foundation for reproducibility and increase your likelihood of citations.
You’ve just spent months completing your study, writing up the results and submitting to your top-choice journal. Now the feedback is in and it’s time to revise. Set out a clear plan for your response to keep yourself on-track and ensure edits don’t fall through the cracks.
There’s a lot to consider when deciding where to submit your work. Learn how to choose a journal that will help your study reach its audience, while reflecting your values as a researcher.
Are you actively preparing a submission for a PLOS journal? Select the relevant journal below for more detailed guidelines.
How to Write an Article
Share the lessons of the Writing Center in a live, interactive training.
Access tried-and-tested training modules, complete with slides and talking points, workshop activities, and more.
IMAGES
VIDEO
COMMENTS
This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation.
We include an overview of basic scientific writing principles, a detailed description of the sections of an original research article, and practical recommendations for selecting a journal and responding to peer review comments.
What’s the Purpose of an Introduction in Scientific Writing? Provide the context of your work (create your research space, define gap in knowledge, set up the direction you’ll take in your discussion section). State your focus (hypothesis, question). Provide justification for your work (how your work can answer the question).
Clear scientific writing generally follows a specific format with key sections: an introduction to a particular topic, hypotheses to be tested, a description of methods, key results, and finally, a discussion that ties these results to our broader knowledge of the topic (Day and Gastel 2012).
Guidelines for effective scientific report introductions. What is the problem? Describe the problem investigated. Summarize relevant research to provide context, key terms, and concepts so your reader can understand the experiment. Why is it important? Review relevant research to provide rationale.
This page is your source for scientific writing & publishing essentials. Learn how to write a successful scientific research article with our free, practical guides and hands-on resources for authors looking to improve their scientific publishing skillset.